Spherical tantalum feed powder for metal additive manufacturing

This article appeared in the Nov/Dec issue of Metal Powder Report. Log in to your free materialstoday.com profile to access the article.

Tantalum is the new “T” metal for additive manufacturing (AM) applications. Metal AM has seen significant growth over the last few years with key drivers coming from the aerospace, medical and dental industries. The metal landscape for AM in these industries has been largely dominated by titanium, nickel alloys and steel alloys. Development of new metals for AM processes in these and other industries is vital for full realization of the capability of this technology. Tantalum, for example, has high ductility, superb corrosion resistance and superior biocompatibility. Global Advanced Metals, a leader for almost 70 years in the production of tantalum and niobium products, has developed tantalum feeds for a range of AM processes. GAM’s spheroidization of raw powders using a plasma technology results in excellent flow properties and high packing density. Test parts and coupons have also been successfully printed via Laser-Powder Bed Fusion process. The physical properties of the printed tantalum confirm suitability for a wide variety of applications including aerospace, medical and dental industries.

Introduction The AM industry is in the process of developing publicly available and standardized property datasets of the most commonly used metals (i.e., Group 4 metals), both in the powder state and as final printed parts. There are a number of studies for non-refractory materials such as steel alloys and nickel alloys. These studies, in general terms, detail the effects of using powders produced from processes like Plasma Rotating Electrode Process (PREP), Vacuum Induction Gas Atomization (VIGA), Electrode Induction Gas Atomization (EIGA) and Plasma Inert-Gas Atomization (PIGA). Additionally these studies detail the effects of using various printing technologies like Electron Beam Melting (EBM), Laser Powder Bed (L-PBF) melting, Direct Energy Deposition (DED) and Jetting on the final additively manufactured parts. In comparison, there are few publications disclosing examples of additively manufactured refractory metal parts and very few on non-alloyed tantalum specifically.

This article appeared in the Nov/Dec issue of Metal Powder Report.